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COVID-19 lung disease is a pulmonary vasculopathy
We read with interest the review by Bailey and Copley
titled e CT features of acute COVID-19 and long-term follow-
up e published in the January 2024 issue of Clinical
Radiology.1
Introduction

The authors discuss the role of computed tomography
(CT) in understanding the pathology of COVID-19 in view of
histological findings. This is a refreshing approach, as much
of the radiology literature has focused solely on diagnostic
features without reference to histology. We write to draw
together important points made by the authors regarding
the underlying pathophysiology of COVID-19 as determined
by imaging, and to offer additional perspectives.

Although the review discusses the many vascular char-
acteristics of lung disease in acute COVID-19, the approach
taken is in linewith a conventional view that the disease is a
respiratory pneumonia, which may or may not be compli-
cated by vasculocentric pathology. We propose that the
radiological and histological vasculopathic features are so
dominant that the disease is more accurately considered
primarily as a small-vessel pulmonary vasculopathy, rather
than an inflammatory disease of the airways, which may be
only secondarily complicated by vascular phenomena. This
model of pathogenesis is evidenced by the dominant
macroscopic vascular distribution and characteristic
vascular phenomena visible radiologically and by correla-
tion with histological microangiopathic processes.
Vascular distribution and characteristics

The lung damage caused by COVID-19 characteristically
results in bilateral and symmetrical pattern of ground glass
opacities or consolidation, which is predominantly periph-
eral and posterior in distribution.2,3 This pattern correlates
with the typical distribution of vascular pathological pro-
cesses in other lung diseases.4
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The distinct vasculocentric phenomena visible in COVID-
19 lung disease also indicate underlying vasculopathic
processes. The term ‘pulmonary emboli’ is used throughout
the review. In light of the autopsy features of immuno-
thrombosis and microangiopathic endothelial damage e

entities that drive the disease in COVID-195e7 e the term
‘pulmonary emboli’ is misleading. It implies the thrombi
have arrived from outside the lungs, as in the majority of
cases of conventional deep-vein-thrombosis-driven emboli,
rather than by thrombosis forming in situ within the lungs
themselves. As correctly highlighted by the review, the
microthrombotic in situ processes of immunothrombosis
represent a different pathophysiological mechanism from
conventional thromboembolic disease. Aligning with this,
the study of CT pulmonary angiography (CTPA) findings in
acute COVID-19 by van Dam et al. demonstrated a more
distal distribution of macroscopic thrombi compared with
non-COVID-19 patients.8 Also, dual energy CT (DECT)
studies proved perfusion defects to be unrelated to the
presence or absence of macroscopic filling defects.7 Indeed,
pulmonary microvascular obstruction with perfusion de-
fects, with thromboinflammatory processes, without
macroscopic thromboembolism, was described as early as
April 2020.9 Optical Coherence tomography also shows
microscopic distal pulmonary arterial thrombosis regard-
less of the presence or absence of macrothrombotic clots
visible on conventional CTPA.10 Lastly, there is no classic
relationship with deep vein thrombosis.11 From these
findings, the visible lung damage evidently represents
intrinsic vasculopathic processes, regardless of the presence
or absence of macroscopic filling defects on CTPA, and the
development from microthrombosis to macrothrombosis
depends on the development and stage of the in situ pro-
coagulant microangiopathy.

The review mentions reverse halo as a sign of organizing
pneumonia in the context of COVID-19 lung disease. It is
important to recognize that this sign can result from pul-
monary infarction.12,13 It should be emphasized that orga-
nizing pneumonia itself also arises from pulmonary
infarction in any context.14,15

As COVID-19 lung disease develops, the vascular phe-
nomenon of aberrant angiogenesis is identified by
ollege of Radiologists. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.crad.2024.04.002&domain=pdf
https://doi.org/10.1016/j.crad.2023.09.012
www.sciencedirect.com/science/journal/00099260
http://www.clinicalradiologyonline.net
https://doi.org/10.1016/j.crad.2024.04.002
https://doi.org/10.1016/j.crad.2024.04.002
https://doi.org/10.1016/j.crad.2024.04.002


Correspondence / Clinical Radiology 79 (2024) e975ee978e976
hierarchical phase-contrast tomography as a primary life-
limiting pathology. This angiogenesis generates intra-
pulmonary arteriovenous shunting by the bronchial circu-
lation with the formation of ‘Sperrarterien’ (specialized,
spiral-like intrapulmonary arteriovenous anastomoses
recruited by hypoxia and flow irregularities).16
Airways

As well as acknowledging the dominant vascular entities,
it is also important to recognize the lack of airways inflam-
mation. The lung disease of COVID-19 is devoid of airways
inflammation to the point that its presence should be
considered inconsistent with the diagnosis.17 Comparisons of
the CT features of COVID-19 versus those of influenza report
significant differences in the appearance of the airways. In
COVID-19 there is a distinct lack of bronchial wall thickening
and tree-in-bud opacification of the airways.18

The review refers to the non-specific nature of ground
glass opacities resulting from alveoli partially collapsing or
partially filling with fluid. However, the filling of the alveoli
should neither be assumed to be due to fluid filling nor the
result of a pathological process which primarily affects the
airways. It is important to acknowledge that ground glass
opacities are found in non-airway-centric pathologies, such
as in situ pulmonary vascular congestion due to micro-
thrombotic phenomena, as well as pulmonary oedema and
pulmonary hemorrhage.2,9 Importantly, hierarchical phase-
contrast tomography demonstrates well-preserved alveolar
structure, but with alveolar obstruction due to the presence
of thrombi.19

The current review uses the terms pneumonia and
pneumonitis interchangeably, favoring pneumonitis toward
the end. The term pneumonia, which has been used widely
in the COVID-19 literature, means nothing more or less than
lung disease, so it is too general and can mistakenly imply
inflammation originating within the airways. The term
pneumonitis seems an improvement because it implies an
inflammatory process, but it does not implicate the vascular
compartment, or refer to pulmonary vascular phenomena.
The available evidence frames the vascular structures as the
primary site of systemic disease in COVID-19. The review
supports important evidence for such a primary vascular
focus without addressing the pathogenesis necessary for
accurate image interpretation. Terminology, which refers to
the primary vascular pathology, as demonstrated by various
imaging modalities, such as pulmonary vasculopathy, or
pulmonary thrombotic microangiopathy, is required to more
accurately describe the lung disease of COVID-19.7,20
Correlation of radiology and histology

The primacy of the vascular pathogenesis visible radio-
logically becomes even more apparent in light of histolog-
ical features.

The review mentions the ‘vascular enlargement sign’,
specifically referring to enlargement of distal subpleural
arteries, and the ‘vascular tree-in-bud’ sign, a distinct
feature of COVID-19 lung disease.9,20e22 As the authors
state, these phenomena are thought to relate to the histo-
logical entity of microvascular thrombosis e or immuno-
thrombosis (inflammatory-mediated in situ clotting).20

Indeed, the histological literature highlights that throm-
bosis at the capillary level is a dominant histological feature
and is identified as a universal finding on autopsy.23

As stated in the review, the visible findings of COVID-19
on CT correlate with histological diffuse alveolar damage
(DAD) and acute respiratory distress syndrome (ARDS).
However, it is important to acknowledge that neither DAD
nor ARDS are considered typical in the setting of acute
COVID-19 and relate to fibrin deposition and immuno-
thrombosis.6,24,25 Also, the histological finding of DAD does
not necessarily implicate airway pathology as a primary
event. By definition, DAD is manifested by injury to both the
alveolar lining and endothelial cells resulting from reduced
oxygen tension of any cause.26 This definition encompasses
vasculocentric pathology with endothelial damage as a pri-
mary insult explaining the radiological features of COVID-19,
instead of being secondary to an airway insult. Importantly,
endothelial damage is widely considered the central process
to the underlying pathogenesis of COVID-19, both in the
lungs and elsewhere in the body, and both in the acute and
post-acute phases.5,27e31 The initial pulmonary symptoms
can be explained by a prothrombotic syndrome with endo-
theliitis at the level of the alveolar capillaries.5,27,32 If
microthrombus formation is not stopped by timely treat-
ment, the vasculopathy will develop into arterial and venous
macrothrombosis.32 This explains the high percentage of
patients with arterial pulmonary thrombi visible on imaging
in late stage COVID-19 disease in combination with low
percentages of deep vein thrombosis in the same patient
population.11,32

The direct correlation of imaging and histology shows
microvascular alterations to be key pathophysiological
drivers.33,34 Notably, microvascular damage and thrombosis
are found on autopsy even in areas that were radiologically
normal on pre-mortem CT, thus implicating vascular
changes leading to DAD.34

Furthermore, the distribution of SARS-CoV-2 infection in
the lungs, as described histologically with topological cor-
relation, shows that the upper lobes are typically not
infected.35 Conversely, the lower lobes, which are highly
damaged, contain high viral loads.35 This distribution of
infection is both aligned with the vascular distribution in
other pulmonary pathologies4, and contrary to the pattern
seen in pulmonary pathologies caused by inhaled
pathogens.36
Long COVID

In consideration of post-acute COVID-19 it is important
to highlight persistent vasculocentric imaging phenomena
in people with the respiratory symptoms of long COVID. In
this context, Xenon MRI studies demonstrate failure of gas
transfer, implicating thrombosis of the alveolar capillaries
in distinction from airway disease.37e40 Dual energy CT
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(DECT) studies of patients previously hospitalized with
COVID-19 demonstrate a persistent microangiopathy. At 6
months, 7.5% had persistent macroscopic clots on the CTPA
element of the DECT, and 87% of patients had persistent
perfusion defects in the lungs on the iodine map. Some
patients with perfusion defects had no residual lung dam-
age visible with CT.41 Importantly, in the setting of respi-
ratory symptoms of long COVID, the benefits of perfusion-
based imaging has been highlighted, regardless of the
severity of the acute-phase disease.42 It is also important to
view these persistent vasculopathic phenomena visible
radiologically in light of findings of persistent endothelial
damage30,31 and persistent fibrinaloid microscopic thrombi
in the context of long COVID patients.43,44 All features
converge on a persistent microangiopathic pathology.
Variants

The review does not mention the time period in which
the image examples were obtained. It is important to
acknowledge that the morphological features of COVID-19
lung disease visible radiologically have changed over time.
This change is dependent on viral variants with a distinction
reported between Omicron compared to pre-Omicron
variants e Omicron causing less vasculopathic phenom-
ena compared with patients infected with the Delta variant,
and Omicron, causing more bronchocentric and less severe
disease.45,46 Importantly, these distinctions are indepen-
dent of vaccination status.45 Such morphological differ-
ences also align with data demonstrating Omicron to be a
less hypercoagulopathic variant.47 This explains why
vascular damage to the lungs in the context of acute COVID-
19 is now a rarity, in our current experience only occurring
in immunocompromised patients.
Intravascular delivery concept

Drawing together the observations highlighted in the
review, we propose that the combined radiological and
histological distribution of vasculocentric lung damage
implicate primary vasculopathic processes. We conclude
that these processes were driven by direct viral entry into
the pulmonary vasculature via an intravascular route from
the upper respiratory tract (the nasal and oral cavities) in
the pre-Omicron SARS-CoV-2 variants.48e50 Although both
epithelial cells and endothelial cells were infected by pre-
Omicron variants, it was the consequence of endothelial
cell interaction (either infection or cell surface interaction)
and subsequent damage, which were responsible for the
lung disease.5,28 Thus, we propose that the intravascular
distribution of the virus accounts for the vascular distribu-
tion and characteristics visible radiologically and evidenced
histologically.

Finally, on the basis of a more complete understanding of
the vasculopathic phenomena evidenced radiologically and
histologically, we consider the terms pulmonary embolism,
pneumonia and vascular complications as fundamentally
misleading and unhelpful in the description of the lung
disease of acute COVID-19. In preference, the more accurate
terminology for primary pulmonary vasculopathy or pulmo-
nary thrombotic microangiopathy should be used in recog-
nition of the endothelial damage and in situ inflammatory-
mediated thrombosis at the core of the disease.

We thank the authors for their contribution and submit
this response in the hope of offering a conceptual advance
regarding the pathogenesis of COVID-19 lung disease.
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